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What is the spatial statistics?

Let to consider a spatial process in d = 2 defined by:

{Y (s) : s ∈ D ⊂ Rd}, (1)

where Y is the observed variable, for example, the number of sick in a
commune or in a neighborhood, or the rainfall in a region. We can denote
to s as the geographical site were was measured that observation and D is
a subset R.
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Cressie (1993) propose three types of spatial observations:

1. Areal data

In the areal data (also known as lattice data) the spatial domain D is fixed
and it’s partitioned into a finite number of areal units with well-defined
boundaries.
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Sudden infant deaths in North Carolina in 1974 (Pebesma (2018); Moraga
(2019))
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Cressie (1993) propose three types of spatial observations:

2. Point patterns

In this type of observations the spatial domain D is random. A set of indexes
provides the locations of random events which are the pattern of the spatial
points.
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John Snows map of the 1854 London cholera outbreak (Moraga (2019))

Figure 2:
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Cressie (1993) propose three types of spatial observations:

3. Geostatistical data

In the geostatistical data the spatial domain D is continuous and fixed, this
mean, s varies continually through D and Y (s) can be observed in any place
of D. The continuity is only for the domain and Y (s) can be a continuous
or discrete variable.

Joaquin Cavieres 9



Cressie (1993) propose three types of spatial observations:

3. Geostatistical data

In the geostatistical data the spatial domain D is continuous and fixed, this
mean, s varies continually through D and Y (s) can be observed in any place
of D. The continuity is only for the domain and Y (s) can be a continuous
or discrete variable.

Joaquin Cavieres 9



Average rainfall measured at 143 recording stations in Paraná state, Brazil
(Moraga (2019))
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There are many R packages to model/predict observations spatially mea-
sured, for example:

• sf

• geoR

• geoRglm

• GMRFLib

• RandomFields

• gstat

• rgdal

• GeoModels

• ......
• INLA
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In the package INLA you can build statistical models for the three spatial
observations mentioned before, but here we will focus in the geostatistical
data.
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Geoestatistics
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Let’s suppose that Y (s1), . . . ,Y (sn) are observations of a variable, Y is
the measure of that variable and s1, . . . , sn are the geographical location
(e.g. latitude-longitude). Generally we assume that this is a realization of
a stochastic process as:

{Y (s) : s ∈ D ⊂ R2}, (2)

where D is a fixed subset in R2 Euclidean space.

For situations where d > 1, the process is referred to as spatial process or
random field
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A Gaussian random field (GRF) is a sequence of random variables, where
the observations come from a continuous space and have joint multivariate
Normal distribution. This sequence of variables can be written as {Y (s) :
s ∈ D ⊂ R2}, besides, this GRF can present the following characteristics:

• Stationarity
• Isotropy

For the above, the GRF has a mean (cte)

E [Y (s)] = µ,∀ s ∈ D (3)

and the covariance depends only of the difference between sites s:

Cov(Y (s),Y (s + h)) = C(h), ∀ s ∈ D,∀ h ∈ R2 (4)
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The covariance matrix Σ of a GRF specifies the dependence structure be-
tween the referenced points. There are different covariance function for the
GRF, for example, if we consider s i and s j ∈ R2 we have:

Exponential
Cov(Y (s i ), Y (s j)) = σ2exp(−κ||s i − s j ||) (5)

where ||s i − s j || is the distance between s i and s j , σ2 is the variance of the random field
and κ > 0 controls the correlation decay on function of the distance

Matérn

Cov(Y (s i ), Y (s j)) = σ2

2ν−1Γ(ν) (κ||s i − s j ||)νKν(κ||s i − s j ||) (6)

where σ2 is the marginal variance of the random field, Kν(·) is the modified Bessel function
and ν > 0 is the smoothness parameter.
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Classical spatial prediction
The classical approach for spatial prediction in Geostatistics is the Kriging
(Matheron (1963)). For example; given observations of a random field
Y = (Y (s1), . . .Y (sn))T , how can we predict the variable Y in the site
s? ? From a GRF perspective, consider a linear model where we have not
covariates, we have only Y (s i), so we can propose the following:

Y = µ1 + ε, where ε ∼ N (0,Σ) (7)
For a spatial covariance (without nugget effect), we can write:

Σ = σ2H(φ), where H(φ)ij = ρ(φ; dij) (8)
dij = |s i − s j | is the distance between s i and s j and ρ is a correlation
function on Rd . For a model with nugget effect we can write:

Σ = σ2H(φ) + τ I (9)
Joaquin Cavieres 17



If we have covariates x = (x(s1) . . . x(sn))T the model has now a more
general form:

Y = Xβ + ε, where ε ∼ N (0,Σ) (10)

,
then we can do:

• Make inference about the estimated parameters
• Predict at s? that we did not observed (Kriging)
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But, what happen if our response variable (Y ) has not a Normal distribu-
tion? Can we use the least square method to find the parameters in the
linear spatial regression?
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Beyond of the least squares method
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Classical linear (Gaussian in the errors) model

Least square method
Y = Xβ + ε

with µ = Xβ and Y ∼ N (µ, σ2). Thus β̂ ∼ N (β, (XT X)−1σ2) and the least square
estimation of β:

S =
n∑

i=1

(Yi − µ)2, with respect to β

This fitting follows from the log-likelihood for the Gaussian model (given the Normal
assumption of ε) based on the Gauss Markov theorem.
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Example: For a spatial Gaussian linear model

Y (s) = µ(s) + ε(s)
= µ(s) + u(s) + ε(s),

where:

• E [y(s)] = µ(s) = x(s)T β

• ε(s) is the zero mean stationary process

• u(s) is a spatially correlated process (A GRF)

• ε(s) is the measurement error (commonly assumed N (0, σ2
ε)).

Joaquin Cavieres 22

Lu000012
Highlight



Likelihood method for the spatial Gaussian linear model

Y (·) is a GRF with mean µ = XT β and covariance function:

C [Y (s1),Y (s2)] = C(s1, s2)

So, for observations Y = (Y (s1) . . .Y (sn))T , the mean vector is Xβ and
a n × n covariance matrix Σ(θ) with entries Σ(θ)i ,j = C(s i , s j). Thus,
the distribution of the response variable is:

Y ∼ MVN(Xβ,Σ(θ))
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The likelihood function for β and θ:

L(β,θ) = (2π)−n/2|Σ(θ)|−1/2 exp
{

− 1
2(Y − Xβ)T Σ(θ)−1(Y − Xβ)

}
(11)

and the log-likelihood

`(β,θ) = −n
2 log(2π)− 1

2log|Σ(θ)|− 1
2(Y −Xβ)T Σ(θ)−1(Y −Xβ) (12)
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Problem 1: The closed form (12) not always is obtained, and we typically
turn to numerical optimization techniques
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On the other hand, we are aware that:

• A Gaussian random field (GRF) is the main component of spatial
modelling, but.....

• Another problem arises when we want to evaluate non Gaussian like-
lihood with a dense covariance matrix (Σ)
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If we use the classical definition of a GRF, then we need to consider:
u(s1)
u(s2)

...
u(sn)

 ∼ N




µ(s1)
µ(s2)

...
µ(sn)

 ,


c(s1, s1) c(s1, s2) · · · c(s1, sn)
c(s2, s1) c(s2, s2) · · · c(s2, sn)

...
...

. . .
...

c(sn, s1) c(sn, s2) · · · c(sn, sn)


 , (13)

where s1, ..., sn are all of the distinct values of s i in our spatial data.
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Problem 2: Using the classical definition of a GRF, then:

The storage scales quadratically in "n"
The computation scales cubically in "n"
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Integrated Nested Laplace Approximation (INLA)
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Commonly we have two paradigms for statistical modelling, for example:

Consider the following: Y is a set of observations with distribution of prob-
ability π(Y | θ). For the above we can estimate θ of two ways:

Frequentist approach
θ denotes fixed and unknown parameters what can be estimated by maxi-
mum likelihood.

Bayesian approach
θ denotes random variables with a prior π(θ) specification. We can estimate
θ based on the posterior:

π(θ | Y ) = π(Y | θ)π(θ)
π(Y ) ∝ π(Y | θ)π(θ) (14)
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Specifically, in the Bayesian framework we can use:

• Hierarchical models to consider complex structures and explain the
behavior of our data

• Propose a model to calculate the uncertainty associated with the
parameters and latent variables (random effects)
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How to do Bayesian inference in R?

R-INLA
The Integrated Nested Laplace Approximation (INLA) is a very used tech-
nique for spatial modelling available in R

This method was proposed by Rue et al. (2009). In summary, we can obtain
the posterior distribution using numerical approximations. Advantage?

We don’t need to do sampling
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INLA works with a types of models called Latent Gaussian models. So, what
is the idea behind of Latent Gaussian Models?

For example: Multiple linear regression model

µi = E(Yi) = β0 +
nβ∑
j=1

βjxji , i = 1, ...., n

where β0 is the intercept and β are the parameters related to the covariates
x.
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Idea behind of a Latent Gaussian Model

Generalized additive model (GAM)

ηi = g(µi) = β0 +
nf∑

k=1
fk(cki), i = 1, ...., n

where g(·) es a link function, β0 is the intercept, fk(·) is the non-linear
smopoth effects of the covariates ck .
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Idea behind of a Latent Gaussian Model

A more complete general structure

ηi = g(µi) = β0 +
nβ∑
j=1

βjxji +
nf∑

k=1
fk(cki), i = 1, ...., n

where g(·) es a link function, β0 is the intercept related to the covariates
x, fk(·) is the non-linear smopoth effects of the covariates ck .
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Latent Gaussian Models

So, we collect all the parameters of the linear predictor in a latent field

u = {β0,β, {fk(·)},η}

and, in this way, we can assign a Gaussian prior (Essentially, a GMRF prior)
to all the elements of u.
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A general way to express a model in INLA:

ηi = β0 +
K∑

k=1
βkxki +

L∑
l=1

fl(zli)

where:

• β0 is the intercept
• (β1 . . . βK ) are coefficients associated with the covariates x = (1. . . xK )
• f = (f (·)1 . . . f (·)L) is a set of functions defined and associated with
some covariates z = (1. . . zL)

Finally:

θ = (β, f ) ∼ GMRF(0,Q)
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Types of models that we can use with INLA:
• Generalized Linear Models (GLM)
• Generalized Linear Mixed Models (GLMM)
• Time series models
• Spatial models
• Spatio-temporal models
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Again, let’s review the assumption of a GRF..


u(s1)
u(s2)

...
u(sn)

 ∼ N




µ(s1)
µ(s2)

...
µ(sn)

 ,


c(s1, s1) c(s1, s2) · · · c(s1, sn)
c(s2, s1) c(s2, s2) · · · c(s2, sn)

...
...

. . .
...

c(sn, s1) c(sn, s2) · · · c(sn, sn)


 ,

Rue and Held (2005) approximates this problem assuming that the GRF is a Gaussian
Markov random field (GMRF) → This means that the instead of to use the covariance
matrix Σ we will use the precision matrix Q = Σ−1
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Considering the above, and taking advantage of the computational efficiency
of using a GMRF, Lindgren et al. (2011) created an explicit link to approx-
imate the GRF by a GMRF. This is:

C(s1, s2) = σ2

2ν−1Γ(ν)(κ||s2 − s1||)νKν(κ||s2 − s1||), (15)

where ||s2 − s1|| is the Euclidean distance between two geographical points
s1 and s2 ∈ RD, Kν is the modified Bessel function with ν > 0, κ > 0
what controls the correlation through ρ =

√
8ν/κ, and σ2 is the marginal

variance.
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The authors noted that the GRF (u(s)) and Matérn function (15) has so-
lution to the linear fractional SPDE

(κ2 − ∆)α/2(τu(s)) = W (s), s ∈ RD, with α = ν + d/2, κ > 0, ν > 0,
(16)

where W is a spatial Gaussian white noise (Whittle (1954), Whittle (1963)),
∆ is the Laplacian operator and τ controls the marginal variance as:

τ2 = Γ(ν)
Γ(ν + d/2)(4π)d/2κ2νσ2 (17)

So, to find u(s) with Matérn function (15) then is necessary to solve (16).
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With additional other mathematical calculus, Lindgren et al. (2011) used the
elements finite method to represent u(s) in a non structured triangulation
as:

uh(s) =
n∑

k=1
wkψk(s), (18)

where {ψk}n
k=1 are piecewise linear basis functions. Finally, they showed

that the Gaussian coefficients {wk}n
k=1 are GMRF when α = 1 and can be

approximated with a GMRF when α = 2 (Liu et al. (2016)).
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Figure 4: A GRF (left) approximated by a GMRF (right), (Krainski et al. (2018))
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Lindgren et al. (2021) did a list with recent applications of the SPDE method
in different areas of the research, for example:

• Astronomy (Levis et al. (2021))
• Health (Moraga et al. (2021), INLA et al. (2021))
• Engineering (Zhang et al. (2021))
• Theory (Ghattas and Willcox (2021))
• Environmetrics (Hough et al. (2021))
• Imaging (Aquino et al. (2021))
• Fisheries (Cavieres et al. (2021))
• .....

More of this references in Lindgren et al. (2021)
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How we can use the approximate GRF (∼ GMRF) in a Bayesian spatial
(spatio-temporal) model?
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A very quick explanation of how works INLA in the spatial context:

• The GRF is parameterized by the precision matrix Q = Σ−1.

• We don’t built a discrete model for the GRF on a grid, we construct
an approximation of the GRF in a spatial continuous space defined on
the entire study area.

• INLA done the inference for univariate posterior densities for the pa-
rameters of u(s), and the joint posterior of the hyperparameters of the
model.
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So, how can we express a spatial model in INLA? → Hierarchical model!

θ ∼ θ Hyperparameters (19)
u | θ ∼ N (0,Q(θ)−1) Latent Gaussian field (20)

yi | u,θ ∼
∏

i
π(yi | ηi ,θ) Observations (21)

where Q(θ) is the precision matrix, u is the latent Gaussian field and ηi =
log(µi) = intercept + f (X i) + u i , where the matrix X is a set of covariates
and u ∼ GMRF(0,Q−1)
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Examples
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Conclusions
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• INLA is an efficient tool to estimate different statistical models.
• The estimation is faster than MCMC method for Bayesian Inference.
• Is an excellent alternative to fit geostatistical spatial/spatio-temporal
models based on the SPDE method.
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Figure 5: Some books to learn about INLA
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Thank You
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